Contents

1. Introduction ... 3
 1.1 Main functionality 3
 1.2 Key features of the system 3

2. Terminology and abbreviations 5

3. Installation ... 7

4. Architecture Overview 8

5. Integration with Internet Gateway services ... 9
 5.1 Transparent HTTP/FTP proxy configuration 9
 5.2 Manual HTTP/FTP proxy configuration 10
 5.2.1 Manual proxy configuration of Mozilla Firefox 10
 5.2.2 Manual proxy configuration of Squid Web Proxy Cache ... 11
 5.3 Internet Content Adaptation configuration 12
 5.4 Large HTTP Objects Handling 12
 5.5 ESETS plug-in filter for SafeSquid Proxy Cache 13
 5.5.1 Operation principle ... 13
 5.5.2 Installation and configuration 13

6. Important ESET Gateway Security mechanisms ... 15
 6.1 Handle Object Policy 15
 6.2 User Specific Configuration 15
 6.3 Blacklist and Whitelist 16
 6.3.1 Whitelist URL ... 16
 6.4 Samples Submission System 16
 6.5 Web Interface .. 17
 6.5.1 License management 18
 6.5.2 Agent HTTP configuration example 18
 6.5.2.1 HTTP Agent testing with the Mozilla Firefox 19
 6.5.3 Statistics .. 20
 6.6 Remote Administration 21
 6.6.1 Remote Administration usage example 21

7. ESET Security system update 23
 7.1 ESETS update utility 23
 7.2 ESETS update process description 23
 7.3 ESETS mirror http daemon 23

8. Let us know ... 24

9. Appendix A. ESETS setup and configuration ... 25
 9.1 Setting ESETS for scanning of HTTP communication - transparent mode 25
 9.2 Setting ESETS for scanning of FTP communication - transparent mode 25
 9.3 Setting ESETS for scanning of ICAP encapsulated HTTP messages 25

10. Appendix B. PHP License 26
1. Introduction

Dear user, you have acquired ESET Gateway Security - the premier security system running under the Linux, BSD and Solaris OS. As you will soon find out, ESET's state-of-the-art scanning engine has unsurpassed scanning speed and detection rates combined with a very small footprint that makes it the ideal choice for any Linux, BSD and Solaris OS server.

1.1 Main functionality

Hypertext Transfer Protocol filter (HTTP)

The HTTP filter module is an HTTP 1.1 compliant special proxy server used to scan communication between HTTP clients and HTTP servers for viruses. The module receives HTTP messages from an HTTP client (a web browser application or other proxy cache) and forwards them to the HTTP server (a web server application) and vice versa. The body of the message (if available) will be scanned for viruses by the esets_http module.

The esets_http is able to act as both a transparent and a non-transparent proxy server depending on the integration of the module into the environment.

File Transfer Protocol filter (FTP)

The FTP filter module is a special transparent proxy server that scans communication between an ftp client and an ftp server for viruses. The FTP gateway module is used to scan both incoming and outgoing data transfers. Depending on the scanning results a transferred object will be cleaned, deleted or blocked.

SafeSquid filter

The SSFI module is a plugin accessing all objects processed by the SafeSquid Proxy cache. Once an object is accessed by the plugin, it will be scanned for infiltrations by the ESETS daemon. In case of positive detection SSFI blocks the appropriate source and sends a predefined template page instead. The esets_ssfi.so module is supported by SafeSquid Advanced version 4.0.4.2 and higher.

Internet Content Adaptation Protocol filter (ICAP)

The ICAP filter module is an ICAP 1.0 compliant special server that scans ICAP encapsulated HTTP messages from ICAP clients for viruses.

1.2 Key features of the system

Advanced engine algorithms

The ESET antivirus scanning engine algorithms provide the highest detection rate and the fastest scanning times.

Multi-processing

ESET Gateway Security is developed to run on single- as well as multi-processor units.

Advanced Heuristics

ESET Gateway Security includes unique advanced heuristics for Win32 worms, backdoor infections and other forms of malware.

Built-In features

Built-in archivers unpack archived objects without the need for any external programs.

Speed and efficiency

To increase the speed and efficiency of the system, its architecture is based on the running daemon (resident program) where all scanning requests are sent.

Enhanced security

All executive daemons (except esets_dac) run under non-privileged user account to enhance security.

Selective configuration

The system supports selective configuration based on the user or client/server.
Multiple logging levels
 Multiple logging levels can be configured to get information about system activity and infiltrations.

Web interface
 Configuration, administration and license management are offered through an intuitive and user-friendly Web interface.

Remote administration
 The system supports ESET Remote Administration for management in large computer networks.

No external libraries
 The ESET Gateway Security installation does not require external libraries or programs except for LIBC.

User-specified notification
 The system can be configured to notify specific users in the event of a detected infiltration or other important events.

Low system requirements
 To run efficiently, ESET Gateway Security requires just 16MB of hard-disk space and 32MB of RAM. It runs smoothly under the 2.2.x, 2.4.x and 2.6.x Linux OS kernel versions as well as under 5.x, 6.x FreeBSD OS kernel versions.

Performance and scalability
 From lower-powered, small office servers to enterprise-class ISP servers with thousands of users, ESET Gateway Security delivers the performance and scalability you expect from a UNIX based solution, in addition to the unequaled security of ESET products.
2. Terminology and abbreviations

In this section we will review the terms and abbreviations used in this document. Note that a boldface font is reserved for product component names and also for newly defined terms and abbreviations. Terms and abbreviations defined in this chapter are expanded upon later in this document.

ESETS

ESET Security is a standard acronym for all security products developed by ESET, spol. s r. o. for Linux, BSD and Solaris operating systems. It is also the name (or its part) of the software package containing the products.

RSR

 Abbreviation for 'RedHat/Novell(SuSE) Ready'. Note that we also support RedHat Ready and Novell(SuSE) Ready variations of the product. The RSR package differs from the “standard” Linux version in that it meets the FHS (File System Hierarchy Standard defined as a part of Linux Standard Base) criteria required by the RedHat Ready and Novell (SuSE) Ready certificate. This means that the RSR package is installed as an add-on application - the primary installation directory is '/opt/eset/esets'.

ESETS daemon

The main ESETS system control and scanning daemon: esets_daemon.

ESETS base directory

The directory where ESETS loadable modules containing the virus signature database are stored. The abbreviation @BASEDIR@ will be used for future references to this directory. The @BASEDIR@ value for the following Operating Systems is listed below:

Linux: /var/lib/esets
Linux RSR: /var/opt/eset/esets/lib
FreeBSD: /var/lib/esets
NetBSD: /var/lib/esets
Solaris: /var/opt/esets/lib

ESETS configuration directory

The directory where all files related to the ESET Gateway Security configuration are stored. The abbreviation @ETCDIR@ will be used for future references to this directory. The @ETCDIR@ value for the following Operating Systems is listed below:

Linux: /etc/esets
Linux RSR: /etc/opt/eset/esets
FreeBSD: /usr/local/etc/esets
NetBSD: /usr/pkg/etc/esets
Solaris: /etc/opt/esets

ESETS configuration file

Main ESET Gateway Security configuration file. The absolute path of the file is as follows:

@ETCDIR@/esets.cfg

ESETS binary files directory

The directory where the relevant ESET Gateway Security binary files are stored. The abbreviation @BINDIR@ will be used for future references to this directory. The @BINDIR@ value for the following Operating Systems is listed below:

Linux: /usr/bin
Linux RSR: /opt/eset/esets/bin
FreeBSD: /usr/local/bin
NetBSD: /usr/pkg/bin
Solaris: /opt/esets/bin

ESETS system binary files directory

The directory where the relevant ESET Gateway Security system binary files are stored. The abbreviation @SBINDIR@ will be used for future references to this directory. The @SBINDIR@ value for the following Operating Systems is listed below:
Linux: /usr/sbin
Linux RSR: /opt/eset/esets/sbin
FreeBSD: /usr/local/sbin
NetBSD: /usr/pkg/sbin
Solaris: /opt/esets/sbin

ESETS object files directory

The directory where the relevant ESET Gateway Security object files and libraries are stored. The abbreviation `@LIBDIR@` will be used for future references to this directory. The `@LIBDIR@` value for the following Operating Systems is listed below:

Linux: /usr/lib/esets
Linux RSR: /opt/eset/esets/lib
FreeBSD: /usr/local/lib/esets
NetBSD: /usr/pkg/lib/esets
Solaris: /opt/esets/lib
3. Installation

After purchasing ESET Gateway Security, you will receive your authorization data (username/password and license key). This data is necessary for both identifying you as our customer and allowing you to download updates for ESET Gateway Security. The username/password data is also required for downloading the initial installation package from our web site. ESET Gateway Security is distributed as a binary file:

esets.i386.ext.bin

In the binary file shown above, 'ext' is a Linux, BSD and Solaris OS distribution dependent suffix, i.e., 'deb' for Debian, 'rpm' for RedHat and SuSE, 'tgz' for other Linux OS distributions, 'fbs5.tgz' for FreeBSD 5.x, 'fbs6.tgz' for FreeBSD 6.x, 'nbs4.tgz' for NetBSD 4.xx and 'sol10.pkg.gz' for Solaris 10.

Note that the Linux RSR binary file format is:

esets-rsr.i386.rpm.bin

To install or upgrade the product, use the following command:

sh ./esets.i386.ext.bin

For the Linux RSR variation of the product, use the command:

sh ./esets-rsr.i386.rpm.bin

to display the product's User License Acceptance Agreement. Once you have confirmed the Acceptance Agreement, the installation package is placed into the current working directory and relevant information regarding the package's installation, un-installation or upgrade is displayed onscreen.

Once the package is installed, you can verify that the main ESETS service is running by using the following command:

Linux OS:

ps -C esets_daemon

BSD OS:

ps -ax | grep esets_daemon

Solaris:

ps -A | grep esets_daemon

After pressing ENTER, you should see the following (or similar) message:

<table>
<thead>
<tr>
<th>PID</th>
<th>TTY</th>
<th>TIME</th>
<th>CMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2226</td>
<td>?</td>
<td>00:00:00</td>
<td>esets_daemon</td>
</tr>
<tr>
<td>2229</td>
<td>?</td>
<td>00:00:00</td>
<td>esets_daemon</td>
</tr>
</tbody>
</table>

At least two ESETS daemon processes are running in the background. The first PID represents the process and threads manager of the system. The other represents the ESETS scanning process.
4. Architecture Overview

Once ESET Gateway Security is successfully installed, you should become familiar with its architecture. The system is comprised of the following parts:

CORE

The Core of ESET Gateway Security is the ESETS daemon (esets_daemon). The daemon uses ESETS API library libesets.so and ESETS loading modules emooX_xx.dat to provide base system tasks such as scanning, maintenance of the agent daemon processes, maintenance of the samples submission system, logging, notification, etc. Please refer to the esets_daemon(8) man page for details.

AGENTS

The purpose of ESETS agent modules is to integrate ESETS with the Linux, BSD and Solaris Server environment.

UTILITIES

The utility modules provide simple and effective management of the system. They are responsible for relevant system tasks such as license management, quarantine management, system setup and update.

CONFIGURATION

Proper configuration is the most important aspect of a smooth-running security system - the remainder of this chapter is dedicated to explaining all related components. A thorough understanding of the esets.cfg file is also highly recommended, as this file contains information essential to the configuration of ESET Gateway Security.

After the product is successfully installed, all its configuration components are stored in the ESETS configuration directory. The directory consists of the following files:

@ETCDIR@/esets.cfg

This is the most important configuration file, as it controls all major aspects of the product’s functionality. The esets.cfg file is made up of several sections, each of which contains various parameters. The file contains one global and several "agent" sections, with all section names enclosed in square brackets. Parameters in the global section are used to define configuration options for the ESETS daemon as well as default values for the ESETS scanning engine configuration. Parameters in agent sections are used to define configuration options of modules used to intercept various data flow types in the computer and/or its neighborhood, and prepare it for scanning. Note that in addition to the various parameters used for system configuration, there are also rules governing the organization of the file. For detailed information on the most effective way to organize this file, please refer to the esets.cfg(5) and esets_daemon(8) man pages, as well as relevant agents’ man pages.

@ETCDIR@/certs

This directory is used to store the certificates used by the ESETS web interface for authentication. Please see the esets_wwwi(8) man page for details.

@ETCDIR@/license

This directory is used to store the product(s) license key(s) you have acquired from your vendor. Note that the ESETS daemon will check only this directory for a valid license key, unless the ‘license_dir’ parameter in the ESETS configuration file is redefined.

@ETCDIR@/scripts/license_warning_script

If enabled by the ESETS configuration file parameter ‘license_warn_enabled’, this script will be executed 30 days (once per day) before product license expiration, sending an email notification about the expiration status to the system administrator.

@ETCDIR@/scripts/daemon_notification_script

If enabled by the ESETS configuration file parameter ‘exec_script’, this script is executed in the event of a detected infiltration by the antivirus system. It is used to send email notification about the event to the system administrator.
5. Integration with Internet Gateway services

ESET Gateway Security protects the organization’s HTTP and FTP services against viruses, worms, trojans, spyware, phishing and other internet threats. The term ‘Gateway Server’ refers to layer 3, or ‘router’ level of the ISO/OSI model. In this chapter we review the process of ESET Gateway Security integration with various services.

5.1 Transparent HTTP/FTP proxy configuration

The configuration for transparent proxying is based on a standard routing mechanism as shown in Figure 5-1 below:

Figure 5-1. Scheme of ESET Gateway Security as a transparent proxy

The configuration is created naturally as kernel IP routing tables are defined on each local network client. These routing tables are used to establish static routes to the default network gateway server (router). On a DHCP network, this is done automatically. All HTTP (or FTP) communication with outbound servers is then routed via network gateway server, where ESET Gateway Security must be installed in order to scan the communication for infiltrations. For this purpose, a generic ESETS HTTP (or FTP) filter has been developed, called esets_http (or esets_ftp).

To configure ESET Gateway Security to scan HTTP (or FTP) messages routed through the network gateway server, enter the command:

/usr/sbin/esets_setup

Follow the instructions provided by the script. When the ‘Available installations/un-installations’ offer appears, choose the ‘HTTP’ (or FTP) option to display the ‘install/uninstall’ options, then choose ‘install’. This will automatically configure the module to listen on a predefined port. It also redirects IP packets originating from the selected network and with HTTP (or FTP) destination port to the port where esets_http (or esets_ftp) listens. This means that only requests originally sent to HTTP (or FTP) destination ports will be scanned. If you also wish to monitor other ports, equivalent redirection rules must be assigned.

In default mode, the installer shows all steps which will be performed and also creates a backup of the configuration, which can be restored at any time. The detailed installer utility steps for all possible scenarios are also described in appendix A of this document.
5.2 Manual HTTP/FTP proxy configuration

The manual proxy configuration (see Figure 5-2) is characterized by explicitly configuring the proxied user agent to listen on a specific port and address of the parent proxy.

Figure 5-2. Scheme of ESET Gateway Security as a manual proxy

With this configuration, the proxy server usually modifies transferred requests and/or responses, i.e., non-transparent mode. The manual proxying functionality of esets_http has been tested with a wide range of common user agents (i.e., proxy caches) such as Squid Proxy Cache and SafeSquid, as well as web browsers such as Mozilla Firefox, Opera, Netscape, and Konqueror. In general, any HTTP user agent which supports manual parent proxy settings will cooperate with the esets_http module. In the next section, we describe the manual proxy configuration setting of esets_http with Mozilla Firefox and Squid Web Proxy Cache, as these are the most common HTTP user agent applications.

5.2.1 Manual proxy configuration of Mozilla Firefox

The manual HTTP/FTP proxy configuration of esets_http with Mozilla Firefox is illustrated on Figure 5-2.

This configuration allows ESET Gateway Security to be installed anywhere within the local network, including the gateway server and the user agent's computer.

In the example below, esets_http is configured to listen on port 8080 of a computer with local network IP address 192.168.1.10, by specifying the following parameters in the [http] section of the ESETS configuration file:

agent_enabled = yes
listen_addr = "192.168.1.10"
listen_port = 8080

The parameter 'listen_addr' can also be the host name which is visible from the local network.

To configure Firefox to use esets_http, click Tools > Options from the main menu, and click Advanced. Click the Network tab and then click the Settings... button. In the Connection Settings window, select the Manual Proxy Configuration option. Finally, enter the host name or IP address in the HTTP Proxy (or FTP Proxy) field, and enter the Port values which esets_http listens on (in this example, IP address 192.168.1.10 and port 8080 shall be specified). To reread the newly created configuration, reload the ESETS daemon.

It should be noted that the configuration described here is not optimal for networks with a large number of client computers. This is because the HTTP cache (if any) is present only in the user agent - thus, the same source object is scanned multiple times when requested from different user agents.
5.2.2 Manual proxy configuration of Squid Web Proxy Cache

The manual HTTP proxy configuration of *esets_http* with the Squid Web Proxy Cache is illustrated by the right hand side of Figure 5-2.

The significant difference from the previously described configuration is that ESET Gateway Security is installed on the HTTP/FTP Gateway between the proxy cache (Squid Web Proxy in this example) and the Internet. Thus, all inbound HTTP/FTP communications are first scanned for infiltrations and then stored in the dedicated network cache. In other words, all previously requested source objects present within the proxy cache are already checked for viruses and no additional checking is necessary when requested again.

In the following example, *esets_http* is configured to listen on port 8080 of the gateway server, with a local network IP address of 192.168.1.10, by specifying the following parameters in the `[http]` section of the ESETS configuration file:

```plaintext
agent_enabled = yes
listen_addr = "192.168.1.10"
listen_port = 8080
```

Note that the parameter *listen_addr* can be used to specify the host name visible from the local network and also can be used to allow *esets_http* to listen to all interfaces, by entering an address of 0.0.0.0. Use caution in the latter case, as users outside the local network would be allowed to use the HTTP/FTP scanner unless additional security is added to prevent this.

To set up Squid to use *esets_http* as a parent proxy, add the following lines to the Squid configuration file (/etc/squid/squid.conf):

```plaintext
cache_peer 192.168.1.10 parent 8080 0 no-query default
acl all src 0.0.0.0/0.0.0.0
never_direct allow all
```

In the example above, Squid has been configured to use HTTP proxy listening at IP address 192.168.1.10 on port 8080 as a parent proxy. All requests processed by Squid will be passed to this destination. The remaining lines are used to configure error message reporting in the event that the parent proxy is down or becomes unreachable. To configure Squid to attempt direct connections when the parent proxy is unreachable, add the following parameters to the Squid configuration file:

```plaintext
cache_peer 192.168.1.10 parent 8080 0 no-query
prefer_direct off
```

To reread the newly created configuration, reload the ESETS daemon.
5.3 Internet Content Adaptation configuration

The Internet Content Adaptation is a well known method aimed at providing object-based content vectoring for HTTP services. It is based on the Internet Content Adaptation Protocol (ICAP) described in the RFC-3507 memo. Configuration for integrating the ICAP services is shown in Figure 5-3:

Figure 5-3. Scheme of ESET Gateway Security as a ICAP server.

The Proxy Cache receives the HTTP request from the User Agent and/or the response from the HTTP server and then encapsulates the message into the ICAP request. The Proxy Cache must also work in this case as the ICAP client and pass the ICAP request for the message adaptation to ESET Gateway Security, namely to a generic ESETS ICAP server - `esets_icap`. The module provides scanning of the encapsulated message body for infiltration. Based on the scanning result, it then provides an appropriate ICAP response which is sent back to the ICAP client, or to the Proxy Cache, for further delivery.

To configure ESET Gateway Security to scan HTTP messages which are encapsulated in ICAP requests, enter the command:

```
/usr/sbin/esets_setup
```

Follow the instructions provided by the script. When the 'Available installations/un-installations' offer appears, choose the 'ICAP' option to display the 'install/uninstall' options. Choose 'install' to automatically configure the module to listen on a predefined port and reload the ESETS daemon service.

In default mode, the installer shows all steps which will be performed and also creates a backup of the configuration, which can be restored later at any time. The detailed installer utility steps for all possible scenarios are also described in appendix A of this documentation.

The second step of the ICAP configuration method is activating the ICAP client functionality within the Proxy Cache. The ICAP client must be configured in order to properly request the `esets_icap` for the infiltration scanning service. The initial request line of the ICAP request must be entered as follows:

```
METHOD icap://server/av_scan ICAP/1.0
```

In the above example, `METHOD` is the ICAP method used, 'server' is the server name (or IP address), and `/av_scan` is the `esets_icap` infiltrations scanning service identifier.

5.4 Large HTTP Objects Handling

Under normal conditions, objects are first transferred from the HTTP server (or client) to `esets_http`, scanned for infiltrations and then transferred to the HTTP client (or server). For large files (the large objects whose transfer time is larger than the timeout defined by the parameter 'lo_timeout') this is not an optimal scenario - the user agent's timeout setting or the user's impatience can cause interrupts or even canceling of the object transfer. Therefore, other methods of processing large objects must be implemented. These are described in the following two sections.
Method of deferred scan

With esets_http, a technique known as the ‘deferred scan’ method of handling large files can be employed. This means that if the object transferred becomes too large, esets_http will begin to send the object transparently to an awaiting HTTP end-point, such as a client or server. After the last part of the object has arrived, the object is scanned for infiltrations. If the object has been found as infected, the last part of the object (last 4KB of object’s data) is not sent to the awaiting end-point and the connection to the end-point is then dropped. Meanwhile, an email message containing details about the dangerous file transfer is sent to the Gateway administrator. This email notification is sent only in a server-to-client data transfer. Additionally, the URL of the source object is stored in the esets_http cache in order to block the source transfer if requested again.

Be aware that the ‘deferred scan’ technique described above presents a potential risk to the computer requesting the infected file for the first time. This is because some parts of the already transferred data can contain executable, dangerous code. For this reason, ESET developed a modified version of the ‘deferred scan’ technique, known as the ‘partial scan’ technique.

Partial scan technique

The ‘partial scan’ technique has been developed as an additional safeguard to the ‘deferred scan’ method. The principle of the ‘partial scan’ technique is based on the idea that the scanning time of a large object is negligible compared to the overall processing time of the object. This concept is especially evident with large object HTTP transfers, as significantly more time is needed to transfer the object than to scan it for infiltrations. This assumption allows us to perform more than one scan during a large object transfer.

To enable this technique, the parameter ‘lo_partscan_enabled’ is entered in the [http] section of the ESETS configuration file. This will cause large objects to be scanned for infiltrations during transfer in predefined intervals, while the data which has already been scanned is sent to an awaiting end-point such as a client or server. This method ensures that no infiltrations are passed to the computer whose user agent has requested the large infected object, because each portion of the sent data is already verified to be safe.

It has been proven that in common circumstances where the speed of the gateway’s local network connection is higher than the speed of the gateway connection to the Internet, the total processing time of a large object transfer using the ‘partial scan’ technique is approximately the same as when the standard ‘deferred scan’ method is used.

5.5 ESETS plug-in filter for SafeSquid Proxy Cache

In previous sections we described the integration of ESET Gateway Security with HTTP and FTP services using esets_http and esets_ftp. The methods described are applicable for the most common user agents, including the well known content filtering internet proxy SafeSquid.

http://www.safesquid.com

However, ESET Gateway Security also offers an alternative method of protecting Gateway services, using the esets_ssfi.so module.

5.5.1 Operation principle

The esets_ssfi.so module is a plug-in to access all objects processed by the SafeSquid proxy cache. Once the plug-in accesses the object, it is scanned for infiltrations using the ESETS daemon. If the object is infected, SafeSquid blocks the appropriate resource and sends the predefined template page instead. The esets_ssfi.so module is supported by SafeSquid Advanced version 4.0.4.2 and later. Please refer to the esets_ssfi.so(1) man pages for more information.

5.5.2 Installation and configuration

To integrate the module, you must create links from the SafeSquid modules directory to the appropriate installation locations of the ESET Gateway Security package. In the following examples, it is assumed that SafeSquid is installed on a Linux OS in the /opt/safesquid directory.

If SafeSquid 4.2 or later is installed, enter the following commands:

mkdir /opt/safesquid/modules
ln -s @LIBDIR@/ssfi/esets_ssfi.so /opt/safesquid/modules/esets_ssfi.so
ln -s @LIBDIR@/ssfi/esets_ssfi.xml /opt/safesquid/modules/esets_ssfi.xml

If an earlier version is installed, enter the following commands:
mkdir /opt/safesquid/modules
ln -s @LIBDIR@/ssfi/esets_ssfi.so /opt/safesquid/modules/esets_ssfi.gcc295.so
ln -s @LIBDIR@/ssfi/esets_ssfi.xml /opt/safesquid/modules/esets_ssfi.xml
/etc/init.d/safesquid restart

To complete the SafeSquid plug-in installation, first logon to the SafeSquid Web Administration Interface. Select the Config menu from the main interface page and browse Select a Section to Configure until you find ESET Gateway Security. Click Submit and create the antivirus profile for the ESET Gateway Security section by clicking the Add button at the bottom. Define the below parameters within the list that appears and click Submit. Remember to save the Safesquid configuration by clicking the Save settings button.

Comment: ESET Gateway Security
Profiles: antivirus

The SafeSquid plug-in is operational immediately after installation, but additional fine tuning should be performed. In the following paragraphs, we explain how to configure SafeSquid to use ESETS predefined blocking templates, in the event that a transferred source object is infected (or not scanned).

Logon to the SafeSquid Web Administration Interface. Select the Config menu from the main interface page and browse Select a Section to Configure until you find ESET Gateway Security. Next, edit the newly created antivirus profile by clicking Edit at the bottom of the ESET Gateway Security section. Then define the following parameters in the list that appears:

Infected template: esets_infected
Not scanned template: esets_not_scanned

After submitting the list of templates, navigate to the Templates page of the main Config menu. You will see a Path parameter that defines the SafeSquid templates directory path. Assuming the parameter is '/opt/safesquid/safesquid/templates', ensure that an appropriate directory exists and if not, create it. In order to access the ESETS predefined templates from within this directory, add the appropriate links using the following commands:

ln -s @LIBDIR@/ssfi/templates/ssfi_infected.html
/opt/safesquid/safesquid/templates/ssfi_infected.html
ln -s @LIBDIR@/ssfi/templates/ssfi_not_scanned.html
/opt/safesquid/safesquid/templates/ssfi_not_scanned.html

Next, click Add in the Templates section to add the new template definitions to the SafeSquid configuration. The following parameters must be defined within the list that appears for the infected ESETS blocking page:

Comment: ESET Gateway Security infected template
Name: esets_infected
File: ssfi_infected.html
Mime type: text/html
Response code: 200
Type: File
Parsable: Yes

For the unscanned ESETS blocking page, the list is as follows:

Comment: ESET Gateway Security not scanned template
Name: esets_not_scanned
File: ssfi_not_scanned.html
Mime type: text/html
Response code: 200
Type: File
Parsable: Yes

To reread the newly created configuration, reload SafeSquid and the ESETS daemon.
6. Important ESET Gateway Security mechanisms

6.1 Handle Object Policy

The Handle Object Policy (see figure 6-1) mechanism provides filtering of scanned objects based on their status. This functionality is based on the following configuration options:

- `action_av`
- `action_av_infected`
- `action_av_notscanned`
- `action_av_deleted`

For detailed information on these options, please refer to the `esets.cfg(5)` man page.

Figure 6-1. Scheme of Handle Object Policy mechanism.

Every object processed is first handled according to the configuration of the `action_av` option. If this option is set to 'accept' (or 'defer', 'discard', 'reject') the object is accepted (or deferred, discarded, rejected). If the option is set to 'scan' the object is scanned for virus infiltrations, and if the 'av_clean_mode' option is set to 'yes', the object is also cleaned. In addition, the configuration options 'action_av_infected', 'action_av_notscanned' and 'action_av_deleted' are taken into account to further evaluate handling of the object. If an 'accept' action has been taken as a result of these three action options, the object is accepted. Otherwise, the object is blocked.

6.2 User Specific Configuration

The purpose of the User Specific Configuration mechanism is to provide a higher degree of customization and functionality. It allows the system administrator to define ESETs antivirus scanner parameters based on the user who is accessing file system objects.

A detailed description of this functionality can be found in the `esets.cfg(5)` man page; in this section we will provide only a short example of a user-specific configuration.

In this example, the `esets_http` module is used to control HTTP traffic on port 8080 of the gateway server, with a local network IP address of 192.168.1.10. The functionality of `esets_http` is based on the `[http]` section of the ESETs configuration file. See the following lines:

```plaintext
[http]
agent_enabled = yes
listen_addr = “192.168.1.10”
listen_port = 8080
action_av = “scan”
```

To provide individual parameter settings, define the `user_config` parameter with the path to the special configuration file where the individual setting will be stored. In the next example, we create a reference to the special configuration file `esets_http_spec.cfg`, which is located in the ESETs configuration directory. See below:
Once the special configuration file is referenced from within the [http] section, create the 'esets_http_spec.cfg' file in the ESETS configuration directory and add the appropriate individual settings. The next example shows the individual setting for parameter 'action_av', for the client computer with IP address 192.168.1.40. See below:

```
[192.168.1.40]
action_av = "reject"
```

Note that the section header identifies the HTTP client for which the individual settings have been created, and the section body contains individual parameters for that HTTP client. With this special configuration, HTTP traffic for all local network clients will be processed normally, i.e. scanned for infiltrations. However, access for the HTTP client with the IP address 192.168.1.40 will be rejected (blocked).

6.3 Blacklist and Whitelist

In the following example we demonstrate blacklist and whitelist creation for the esets_http configured as an HTTP proxy scanner. Note that the configuration described in the previous section is used for this purpose.

To create a blacklist used by esets_http, create the following group section within the special configuration file 'esets_http_spec.cfg', introduced in the previous section. See below:

```
[black-list]
action_av = "reject"
```

Next, add the HTTP server to the 'black-list' group. To do this, the following special section must be created:

```
[aaa.bbb.ccc.ddd]
parent_id = "black-list"
```

In the example above, 'aaa.bbb.ccc.ddd' is the IP address of the server added to the 'black-list'. All HTTP traffic related to the specified server will now be rejected, i.e. the server will be blocked.

To create the 'white-list' used by esets_http it is necessary to create the following group section within the special configuration file 'esets_http_spec.cfg' which was introduced in the previous section. See below:

```
[white-list]
action_av = "accept"
```

Adding HTTP servers to the list is self-explanatory.

6.3.1 Whitelist URL

This will be helpful while streaming a lot of data (e.g. multimedia). To create an URL’s whitelist used by esets_http, add the URL address to the following special configuration file whitelist_url in @ETCDIR@/http directory:

```
echo "streaming.address.com:80/*" >> @ETCDIR@/http/whitelist_url
```

NOTE: The syntax of URL’s whitelist is simply a list of URL addresses (one per line) as shown in the object specification of esets_http logging output. ESETS reads the list from within the file whitelist_url. After adding or removing some URL addresses, restart the ESETS daemon. For more information please read the esets_http(1) manpage.

6.4 Samples Submission System

The Samples submission system is an intelligent ThreatSense.Net technology that collects infected objects which have been detected by advanced heuristics and delivers them to the samples submission system server. All virus samples collected by the sample submission system will be processed by the ESET virus laboratory and if necessary, added to the ESET virus signature database.

NOTE: According to our license agreement, by enabling sample submission system you are agreeing to allow the computer and/or platform on which the esets_daemon is installed to collect data (which may include personal information about you and/or the user of the computer) and samples of newly detected viruses or other threats and send them to our virus lab. This feature is turned off by default. All information collected will be used only to analyze
new threats and will not be used for any other purpose.

In order to activate the Samples Submission System, the samples submission system cache must be initialized. This can be achieved by enabling the `samples_enabled` option in the `[global]` section of the ESETS configuration file. To allow for the actual delivery of samples to the ESET virus laboratory servers, the parameter `samples_send_period` must also be specified in the same section.

In addition, users can choose to provide the ESET virus laboratory team with supplementary information using the `samples_provider_mail` and/or `samples_provider_country` configuration options. The information collected using these options will assist in providing the ESET team with an overview about a given infiltration which may be spreading over the Internet.

For more information on the Samples Submission System, refer to the `esets_daemon(8)` man page.

6.5 Web Interface

The Web Interface allows user-friendly configuration, administration and license management of ESET Security systems. This module is a separate agent and must be explicitly enabled. To quickly configure the Web Interface, set the following options in the ESETS configuration file and restart the ESETS daemon:

```plaintext
[wwwi]
agent_enabled = yes
listen_addr = address
listen_port = port
username = name
password = pass
```

Replace the text in italics with your own values and direct your browser to `https://address:port` (note the https). Login with `username/password`. Basic usage instructions can be found on the help page and technical details about `esets_wwwi` can be found on the `esets_wwwi(1)` man page.

The web interface allows you to remotely access the ESETS daemon and deploy it easily. This powerful utility makes it easy to read and write configuration values.

Figure 6-1. ESET Security for Linux - Home screen.

The web interface window of ESET Gateway Security is divided into two main sections. The primary window, that serves to display the contents of the selected menu option and the main menu. This horizontal bar on the top lets you navigate between the following main options:

- **Home** - provides basic system and ESET product information
- **Licenses** - is a license management utility, see the following chapter for mode details
- **Configuration** - you can change the ESET Gateway Security system configuration here
- **Control** - allows you to run simple tasks and view global statistics about objects processed by esets_daemon
- **Help** - provides detailed usage instructions for the ESET Gateway Security web interface
- **Logout** - use to end your current session
6.5.1 License management

You can upload a new license using the Web interface, as shown in Figure 6-2.

If you want to display licenses in the console, use the following command:

```
/usr/sbin/esets_lic --list
```

If you want to import new license files, use the following command:

```
/usr/sbin/esets_lic --import *.lic
```

Figure 6-2. ESET Licenses.

You can enable the license notification option in the Global section options. If enabled, this functionality will notify you 30 days prior to your license expiration.

6.5.2 Agent HTTP configuration example

ESETS can be configured in two ways. In this example we will demonstrate how to use both when configuring the HTTP module, leaving you the choice of your preferred configuration method:

- Using the ESETS configuration file:

```ini
[http]
agent_enabled = yes
listen_addr = "0.0.0.0"
listen_port = 8080
```
Using the web interface:

Figure 6-3. ESETS - Configuration > HTTP Proxy.

Always remember to save your new configuration by clicking Save changes. To apply your new changes click the Apply changes button in the Configuration sections panel.

6.5.2.1 HTTP Agent testing with the Mozilla Firefox

To test ESETS HTTP Agent on your local machine, you need to set the local proxy server to localhost:8080. See the figure below for an example of such configuration in the Mozilla Firefox browser:

Figure 6-5. Mozilla Firefox - Network Settings.

NOTE: You do not need to configure the local machines connected to the ESETS server in the same manner. However, you will still need to set a transparent http proxy via netfilter (see section A.1 for details).
If attempt to open an infected file, a warning message similar to the one on the figure below will display in your browser window:

Figure 6-6. ESETS warning message.

![ESET Gateway Security warning](image)

6.5.3 Statistics

You can view statistics for all of active ESETS agents here. **Statistics** summary refreshes every 10 seconds.

Figure 6-5. ESETS - Control > Statistics.
6.6 Remote Administration

ESETs supports ESET Remote Administration for gateway security management in large computer networks. The ESETs Remote Administration Client is part of the main ESETs daemon and performs the following functions:

- Communicates with ERA Server and provides you with system information, configuration, protection statuses and several other features
- Allows client configurations to be viewed/modified using the ESET Configuration Editor and implemented with the help of configuration tasks
- Can perform Update Now tasks
- Performs On-demand scans as requested, and submits the resulting scan logs back to ERA Server

NOTE: For this option to be available you must have a valid license for ESET File Security.

- Adds logs of notable scans performed by the ESETs daemon to Threat logs
- Sends all non-debug messages to Event logs

These functionalities are not supported:

- Firewall Log
- Remote installation

For more information, please read the ESET Remote Administrator manual. This manual is located on our web site at the following link:

http://www.eset.com/documentation

6.6.1 Remote Administration usage example

Before commencing any remote administration process ensure your system fulfills the three following prerequisites:

- Running ERA Server
- Running ERA Console
- Enabled RA Client in the ESETs daemon. Ensure that firewall settings do not block traffic to ERA Server or vice versa.

To setup the basics, specify the address of your ERA Server in the 'racl_server_addr' parameter first. If you are using a password to access the ERA Console password, you must edit the value of the 'racl_password' parameter accordingly. Change the value of the 'racl_interval' parameter to adjust the frequency of connections to ERA Server (in minutes).

You can either use the web interface (see also previous chapter) to apply the new configuration, or you can adjust these parameters in the [global] section of the ESETs configuration file as follows:

```plaintext
racl_server_addr = "yourServerAddress"
racl_server_port = 2222
racl_password = "yourPassword"
racl_interval = 1
```

NOTE: All applicable ESET Remote Administration Client variables are listed on the esets_daemon(8) man page.

The ESETs daemon configuration will be reloaded and RACL will connect to ERA Server. You will be able to see a newly connected client in your ERA Console. Press the F5 button (or Menu > View > Refresh) to manually refresh the list of connected clients.
By using ERA Console you can create a configuration task to ESETS daemon from ERA Console:

- Right click the connected **Client Name**
- Navigate to **New Task > Configuration Task > Create...**
- Expand **Unix ESET Security tree**

For an example of a configuration task by the DAC agent, see below:
7. ESET Security system update

7.1 ESETS update utility

To maintain the effectiveness of ESET Gateway Security, the virus signature database must be kept up to date. The esets_update utility has been developed for this purpose. See the esets_update(8) man page for details. To launch an update, the configuration options ‘av_update_username’ and ‘av_update_password’ must be defined in the [global] section of the ESETS configuration file. In the event that your server accesses the Internet via HTTP proxy, the additional configuration options ‘proxy_addr’, ‘proxy_port’ must be defined. If access to the HTTP proxy requires a username and password, the ‘proxy_username’ and ‘proxy_password’ options must also be defined in this section. To initiate an update, enter the following command:

@SBINDIR@/esets_update

To provide the highest possible security for the end user, the ESET team continuously collects virus definitions from all over the world - new patterns are added to the virus signature database in very short intervals. For this reason, we recommend that updates be initiated on a regular basis. To specify the update frequency, the ‘av_update_period’ option must be defined in the [global] section of the ESETS configuration file. The ESETS daemon must be up and running in order to successfully update the virus signature database.

7.2 ESETS update process description

The update process consists of two stages: First, the precompiled update modules are downloaded from the ESET server. If the option ‘av_mirror_enabled’ is set to ‘yes’ in the [global] section of the ESETS configuration file, copies (or mirror) of these update modules are created in the following directory:

@BASEDIR@/mirror

If desired, the Mirror directory path can be redefined using the ‘av_mirror_dir’ option in the [global] section of the ESETS configuration file. The newly created Mirror can then serve as a fully functional update server and can be used to create lower (child) Mirror servers. See section 7.3 for details.

The second stage of the update process is the compilation of modules loadable by the ESET Gateway Security scanner from those stored in the local mirror. Typically, the following ESETS loading modules are created: loader module (em000.dat), scanner module (em001.dat), virus signature database module (em002.dat), archives support module (em003.dat), advanced heuristics module (em004.dat), etc. The modules are created in the following directory:

@BASEDIR@

This is the directory where the ESETS daemon loads modules from and thus can be redefined using the ‘base_dir’ option in the [global] section of the ESETS configuration file.

7.3 ESETS mirror http daemon

ESETS mirror http daemon is installed automatically with ESET Gateway Security. The http mirror daemon starts if the option ‘av_mirror_httpd_enabled’ in the [global] section of the ESETS configuration file is set to ‘yes’ and the Mirror is enabled.

Options ‘av_mirror_httpd_port’ and ‘av_mirror_httpd_addr’ define the port (default 2221) and address (default: all local tcp addresses) where the http server listens.

The option ‘av_mirror_httpd_auth_mode’ allows access authentication (default: none) to be changed to basic. The options ‘av_mirror_httpd_username’ and ‘av_mirror_httpd_password’ allow an administrator to define the login and password used to access the Mirror.
8. Let us know

Dear user, we hope this Guide has provided you with a thorough understanding of the requirements for ESET Gateway Security installation, configuration and maintenance. However, our goal is to continually improve the quality and effectiveness of our documentation. If you feel that any sections in this Guide are unclear or incomplete, please let us know by contacting Customer Care:

http://www.eset.com/support

or use directly the support form:

http://www.eset.eu/support/form

We are dedicated to provide the highest level of support and look forward to helping you should you experience any problems concerning this product.
9. Appendix A. ESETS setup and configuration

9.1 Setting ESETS for scanning of HTTP communication - transparent mode

HTTP scanning is performed using the *esets_http* daemon. In the `[http]` section of the ESETS configuration file, set the following parameters:

```
agent_enabled = yes
listen_addr = "192.168.1.10"
listen_port = 8080
```

In the example above, 'listen_addr' is the address of the local network interface named 'ifa'. Restart the ESETS daemon. The next step is to redirect all HTTP requests to *esets_http*. If IP-filtering is being performed by the ipchains administration tool, an appropriate rule would be:

```
ipchains -A INPUT -p tcp -i if0 --dport 80 -j REDIRECT 8080
```

If IP-filtering is being performed by the iptables administration tool, the rule is:

```
iptables -t nat -A PREROUTING -p tcp -i if0 --dport 80 -j REDIRECT --to-ports 8080
```

On FreeBSD, the rule is:

```
ipfw add fwd 192.168.1.10,8080 tcp from any to any 80 via if0 in
```

On NetBSD and Solaris, the rule is:

```
echo 'rdr if0 0.0.0.0/0 port 80 -> 192.168.1.10 port 8080 tcp' | ipnat -f -
```

9.2 Setting ESETS for scanning of FTP communication - transparent mode

FTP scanning is performed using the *esets_ftp* daemon. In the `[ftp]` section of the ESETS configuration file, set the following parameters:

```
agent_enabled = yes
listen_addr = "192.168.1.10"
listen_port = 2121
```

In the example above, 'listen_addr' is the address of the local network interface named 'ifa'. Restart the ESETS daemon. Then, redirect all FTP requests to *esets_ftp*. If IP-filtering is being performed by the ipchains administration tool, an appropriate rule would be:

```
ipchains -A INPUT -p tcp -i if0 --dport 21 -j REDIRECT 2121
```

If IP-filtering is being performed by the iptables administration tool, the rule is:

```
iptables -t nat -A PREROUTING -p tcp -i if0 --dport 21 -j REDIRECT --to-ports 2121
```

On FreeBSD, the rule is:

```
ipfw add fwd 192.168.1.10,2121 tcp from any to any 21 via if0 in
```

On NetBSD and Solaris, the rule is:

```
echo 'rdr if0 0.0.0.0/0 port 21 -> 192.168.1.10 port 2121 tcp' | ipnat -f -
```

9.3 Setting ESETS for scanning of ICAP encapsulated HTTP messages

ICAP encapsulated HTTP message scanning is performed using the *esets_icap* daemon. In the `[icap]` section of the ESETS configuration file, set the following parameters:

```
agent_enabled = yes
listen_addr = "192.168.1.10"
listen_port = 1344
```

In the example above, 'listen_addr' is the address of the local network interface named 'ifa'. After adding these parameters, restart the ESETS daemon.
10. Appendix B. PHP License

The PHP License, version 3.01 Copyright (c) 1999 - 2006 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "PHP" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact group@php.net.
4. Products derived from this software may not be called "PHP", nor may "PHP" appear in their name, without prior written permission from group@php.net. You may indicate that your software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo" or "phpfoo".
5. The PHP Group may publish revised and/or new versions of the license from time to time. Each version will be given a distinguishing version number. Once covered code has been published under a particular version of the license, you may always continue to use it under the terms of that version. You may also choose to use such covered code under the terms of any subsequent version of the license published by the PHP Group. No one other than the PHP Group has the right to modify the terms applicable to covered code created under this License.
6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes PHP software, freely available from <http://www.php.net/software/>".

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.